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A new method to solve linear dynamics problems using an asymptotic method is
presented. Asymptotic methods have been efficiently used for many decades to solve
non-linear quasistatic structural problems. Generally, structural dynamics problems are
solved using finite elements for the discretization of the space domain of the differential
equations, and explicit or implicit schemes for the time domain. With the asymptotic
method, time schemes are not necessary to solve the discretized (space) equations. Using
the analytical solution of a single degree of freedom (DOF) problem, it is demonstrate, that
the Dynamic Asymptotic Method (DAM) converges to the exact solution when an infinite
series expansion is used. The stability of the method has been studied. DAM is
conditionally stable for a finite series expansion and unconditionally stable for an infinite
series expansion. This method is similar to the analytical method of undetermined
coefficients or to power series method being used to solve ordinary differential equations.
For a multi-degree-of-freedom (MDOF) problem with a lumped mass matrix, no
factorization or explicit inversion of global matrices is necessary. It is shown that this
conditionally stable method is more efficient than other conditionally stable explicit central
difference integration techniques. The solution is continuous irrespective of the time
segment (step) and the derivatives are continuous up to order N-1 where N is the order
of the series expansion.
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1. INTRODUCTION

The so-called perturbation technique or asymptotic method has been known for more than
a century [1]. It has been used to find the solution of a problem through an asymptotic
development which is a function of an independent parameter a:

{u(a)}= s
N

j=0

aj{uj}= {u0}+ a{u1}+ a2{u2}+· · ·+ aN{uN}, (1)

where the vectors {uj} are independent of the variable a. This technique, for example,
has been applied to discover the planet Neptune by the French astronomer Leverrier.
His computations were based on the perturbation of the orbit of Uranus. In the
same manner, the planet Pluton has been discovered using a perturbation of the orbit
of Neptune [1]. This technique has also been used in other fields. Its main drawback
was related to the manipulation of the asymptotic developments. That is why this
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technique was limited to very low orders. Nowadays, using symbolic manipulation
software, it is easier to manipulate the algebra of the asymptotic method even for very high
orders.

Some researchers have adopted the asymptotic method in order to solve structural
stability problems. Koiter [2] was one of the pioneers in this field and his Ph.D. thesis was
on the stability of structures using the perturbation method. Thompson and Walker [3]
have applied this technique, in combination with the finite element method, to the solution
of non-linear problems. Their success was limited and they concluded that this method is
not applicable to the development of new solution techniques. A detailed literature review
can be found in the paper by Gallagher [4].

In the mid and late seventies, many remarkable developments were made by Budiansky
[5] and Potier-Ferry [6]. These developments were based on Koiter’s work. Apparently,
the first interesting article on the application of the asymptotic method combined with
finite element formulations was published by Damil and Potier-Ferry [7]. They applied it
to the solution of a non-linear quasistatic problem. They called the method the asymptotic
numerical method. Subsequently, Cochelin et al. [8–11] at the University of Metz, have
presented many results based on this approach. They have proved that the numerical
asymptotic method can be used effectively to solve elastic non-linear problems using the
finite element method. In their case, the discretized equilibrium equations are written in
a polynomial form.

Recently, Ammar [12] has extended the asymptotic numerical method to the case of
equilibrium equations that are not based on a polynomial form (shell finite element
formulations using large rotations theory). This new approach is called the perturbed
asymptotic method. He has demonstrated that the classical numerical asymptotic and the
perturbed asymptotic methods are more efficient than the classical Newton–Raphson
method for the solution of a non-linear quasistatic problem.

In this paper, a new approach, called dynamic asymptotic method (DAM), is presented
for the solution of transient dynamic problems. Using a finite element discretization
scheme in space, the linear dynamic problem results in a set of ordinary differential
equations of the form:

[M]{ü(t)}+[C]{u̇(t)}+[K]{u(t)}= {F(t)}, (2)

where [M], [C] and [K] are respectively the mass, damping and stiffness matrices, {u}
the nodal displacement vector, and a dot denotes differentiation with respect to time t.
At this stage, it is obvious that the use of a numerical technique to discretize the
time domain is necessary. Equation (2) can be projected in the modal space using
standard modal superposition techniques [13, 14]. If the full system is conserved, the
time domain can be discretized using the standard Euler, second order explicit, or
Newmark-b implicit schemes. In either case, the resulting discretized system can be written
as

[K�]{Du}= {R(t)}, {u(t+Dt)}= {u(t)}+ {Du}, (3a, b)

where [K�] and {R(t)} are respectively the effective stiffness matrix and the effective
incremental load vector. Both the definition of [K�] and {R(t)} depend on the integration
scheme used. The vector {Du} is the incremental displacement vector to be added to the
known solution at time t, {u(t)}, to obtain {u(t+Dt)}. In all cases, the solution is obtained
in an incremental manner which means that the nodal displacement, velocity and
acceleration vectors are known only at certain points in the time domain
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(0, Dt, 2D t, . . . , nD t, etc.). Unfortunately, the explicit method is conditionally stable and
very small time steps are often needed. The unconditionally stable implicit scheme permits
the use of larger time steps, the size of which is governed only by accuracy considerations.
Unfortunately, this scheme requires a matrix factorization which means that larger
computer core storage is needed and more operations per time step are required than with
the central difference scheme. Also, to avoid the aliasing phenomenon, the time step must
be less than or equal to the lowest period which participates in the response divided by
ten [14].

In the following sections, the solution of the transient dynamic problem using the
asymptotic development equation (1) is presented. This dynamic asymptotic method
(DAM) does not need any time integration scheme and is continuous for any time. If the
mass matrix is diagonal, no global matrix factorization is required because the inverse of
this matrix corresponds to the inverse of each individual diagonal term:

1/M11 0 0 0

0 1/M22 0 0
[Mn× n ]−1 =G

G

G

K

k
0 0 . . . 0

G
G

G

L

l

.

0 0 0 1/Mnn

This paper focuses only on the fundamentals of the DAM (principles and stability
analysis). Finally, it is demonstrated that the DAM is similar to the methods of
undetermined coefficients and power series being used to solve ordinary differential
equations.

2. ASYMPTOTIC DEVELOPMENT IN THE TIME DOMAIN

2.1.  

The principle behind this new method, is to determine the nodal solution (finite element
discretization of space is assumed) which is a function of time, and is expressed as a power
series of order N (asymptotic development with center t=0):

{u(t)}= {u0}+ t{u1}+ t2{u2}+ t3{u3}+· · ·+ tN{uN}, {u(t)}= s
N

j=0

tj{uj}, (4a, b)

where {uj} are the unknown vectors which are independent of time. From equation (4),
the nodal velocities and acclerations can be written as

{u̇(t)}= s
N

j=1

jt( j−1){uj}, {ü(t)= s
N

j=2

j( j−1)t( j−2){uj}. (5a, b)

It is observed from equations (4) and (5a) that at t=0, {u0} and {u1} represent the initial
conditions (displacements and velocities) and therefore, these two vectors are assumed to
be known. Now, consider the nodal load vector which is also a function of time and is
defined in equation (2). Just like {u(t)}, this vector can also be expressed as

{F(t)}= s
N−2

j=0

tj{Fj}. (6)
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The development of the loading term up to order (N−2) instead of N will be explained
after equation (9b) is presented. Using equations (4–6), the equations of motion (2) can
be written as

[M]0 s
N

j=2

j( j−1)t( j−2){uj}1+[C]0 s
N

j=1

jt( j−1){uj}1+[K]0 s
N

j=0

tj{uj}1= s
N−2

j=0

tj{Fj}. (7a)

By grouping terms of similar powers of t in equation (7), the following equation is
obtained:

2[M]{u2}+[C]{u1}+[K]{u0}− {F0}+ t(6[M]{u3}+2[C]{u2}+[K]{u1}− {F1})

+ t2(12[M]{u4}+3[C]{u3}+[K]{u2}− {F2})+ t3(20[M]{u5}+4[C]{u4}

+[K]{u3}− {F3})+ · · ·+ tN−2(N(N−1) [M]{uN}+(N−1) [C]{uN−1}

+[K]{uN−2}− {FN−2})=0. (7b)

Since the equilibrium equations (2) must be satisfied for any value of t, one can conclude
that

2[M]{u2}+[C]{u1}+[K]{u0}= {F0}; 6[M]{u3}+2[C]{u2}+[K]{u1}= {F1}; (8a)

. . . ; N(N−1) [M]{uN}+(N−1) [C]{uN−1}+[K]{uN−2}= {{FN−2}. (8b)

Equations (8) represent a set of (N−2) systems of equations. It should be noted that the
vectors {u0} and {u1} are the initial conditions of the above mentioned second order
problem. Thus, from equations (8), the unknown discrete spatial vectors can be written
as

{u2}= 1
2 [M]−1(F0}−[C]{u1}−[K]{u0}); {u3}= 1

6 [M]−1({F1}−2[C]{u2}−[K]{u1})

(9a)

. . . ; {uN}=(1/N(N−1)) [M]−1({FN−2}−(N−1) [C]{uN−1}−[K]{uN−2}). (9b)

It is seen that all vectors {uj} are obtained in a recursive fashion from the two previous
vectors {uj−1} and {uj−2} and the load vector {Fj−2}. It is obvious that the accuracy of
the dynamic response depends on the value of N, larger values of N resulting in higher
accuracy. When a finite series of terms is used, one can determine a radius of convergence
beyond which the series will diverge. Therefore, a convergence criterion must be defined
in order to establish the critical time value tcrit , beyond which the accuracy of the solution
is not satisfactory. From equation (9b), it is also noted that for computation of the last
vector {uN}, the two previous vectors {uN−1} and {uN−2} and the vector {FN−2} must be
known. This explains why the time load vector is only expanded up to order (N−2)
instead of N.

If there exists a criterion the radius of convergence of the asymptotic expansion, the
critical time tcrit can then be calculated. Using equations (4) and (5), the displacements and
the velocities can be evaluated at tcrit . The expansion of a new series with center t= tcrit

can be written as

{u(tcrit + t)}= s
N

j=0

(t− tcrit )j{uj}= s
N

j=0

t ji{uj}, (10)
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where

{u0}= {u(t=0)}= {u(t= tcrit )}, {u1}= {u̇(t=0)}= {u̇(t= tcrit )}. (11)

As seen from equation (11), the solution (displacements) and its first derivative (velocities)
are continuous at t= tcrit . The load vector can also be written in the same manner as

{F(tcrit + t)}= s
N−2

j=0

tj{Fj}. (12)

Finally, equation (9) is used to evaluate the new {uj} vectors. Figure 1 illustrates this
step-by-step procedure schematically.

2.2.    

Having demonstrated that DAM can be applied to solve dynamic problems with the
full system of equations, it is also possible to apply DAM in modal subspace using a mode
superposition technique. One calls this method, modal dynamic asymptotic method
(MDAM). To develop this method, one applies the asymptotic development to each
uncoupled equation resulting from the transformation to the modal space. The modal
transformation can be written:

{un}=[X]{ym}, {pm (t)}=[X]{F(t)}, [X]T[M] [X]= [I],

[X]T[K] [X]= [l]= [v2] and [X]T[C] [X]= [2jv], (13)

where [X] is the matrix of the m eigenvectors and [v2] is a diagonal matrix containing the
pulsation squared and [2jv] is a diagonal matrix where j is the modal damping. One
obtains a set of uncoupled equations:

ÿr +2vr jr ẏr +v2
r yr = pr . (14)

By using a separate asymptotic development for each equation (14):

yr = s
N

j=0

tj yr( j), (15)

Figure 1. Step by step procedure with DAM: ——, reference solution; - - - -, first asymptotic development;
–·–, second asymptotic development.
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Figure 2. Time step change with dynamic asymptotic method: ——, reference solution; - - - -, solution with
(N−1) terms; –·–, solution with N terms.

and using the approach described in section 2.1, one can write

yr(N) = (1/N(N−1)) [pr(N−2) − (N−1) (2vr jr )yr(N−1) −v2
r yr(N−2)], (16)

where the initial conditions are

{yr(0)}=[X]−1{u0}=[X]T[M]{u0}, {yr(1)}=[X]−1{u1}=[X]T[M]{u1}.

2.3.    () 

With the dynamic asymptotic method, it is not possible to obtain the solution with only
one limited series expansion because the solution diverges for a value of t larger than tcrit .
The series development must be within the radius of convergence of the series. Therefore,
the critical time tcrit must be such that the given mathematical norm based on the
displacement or on the equations of motion (equation (2)) is less than a fixed small value
(10−3 to 10−6). It would be time consuming to adopt a value of tcrit by trial and error in
order to determine the norm.

In the present work, the criterion to obtain the value of tcrit is based on the fact that
the solutions of the asymptotic developments will be approximately the same if series of
order (N−1) and (N) are used. The main characteristic of the polynomial series of order
(N−1) and N is shown in Figure 2. For order (N−1), the series diverges to the upper
part of the figure and for order N to the lower part. Therefore, it is observed that for a
specific tolerance o, the criterion for the selection of tcrit can be written as

>{u(ti
crit + t)}order N − {u(ti

crit + t)}order N−1 >
>(u(ti

crit + t)}order N − {u(ti
crit )}> =

>tN{uN}>
>t{u1}+ t2{u2}+···+ tN{uN}> E o, (17a)

where ti
crit represents the critical time of the previous time series expansion. Neglecting the

higher order terms in the denominator, equation (17a) becomes

tN>{uN}>/t>{u1}>E o. (17b)

Once vectors {u1} and {uN} are known, and for a given value of o, the critical time can
be estimated for the segment (i+1) by the equation:

ti+1
crit =(o>{u1}>/>{uN}>)1/N−1, if >{u1}> $ 0. (18a)
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Recalling that vector {u1} corresponds to the velocities at the end of the previous segment,
it relates therefore to the initial conditions of the current time segment. In the case where
{u1} is zero, the critical time segment can be obtained by

ti+1
crit =(o>{u2}>/>{uN}>)1/N−2. (18b)

For the MDAM, the time segment length (critical time) to use is the one corresponding
to the lowest period of vibration (or highest frequency) retained:

ti+1
crit =6(o =yr(1) /yr(N) =)1/N−1 if yr(1) $ 0

(o =yr(2) /yr(N) =)1/N−2 if yr(1) = 07 for the highest frequency. (18c)

For the numerical examples presented in the sections 4 and 5, equation (18) is employed
to determine the value of the critical time. Other techniques have been proposed by
Cochelin [8] to establish the radius of convergence of the polynomial series.

2.3. 

DAM and MDAM are efficient techniques and they can easily be implemented in any
finite element software. There are two approaches to compute the right side of equation
(9). The matrix products [C]{uj−1} and [K]{uj−2} can be performed either at the global level
or at the element level. In the former case, these two matrices must be stored in addition
to the mass matrix. In the latter case, no additional computer storage is needed and each
element stiffness and damping matrices must be computed (N−2) times in order to
determine the (N−2) {uj} vectors. If numerical integration must be performed for each
element, this approach can be time consuming. If the Rayleigh damping matrix (linear
combination of the mass and rigidity matrices) is used, the previous procedure can be easily
modified. The DAM is similar to a step-by-step integration method but there are three
major differences between these two approaches:

(1) In the DAM, no hypothesis is made on the approximation of time derivatives.
(2) The time segment in the asymptotic method can be very large and automatically

computed. The time segment is defined as the difference between two consecutive critical
times (tcrit ). Thus, the time segment does not have the same meaning as the time step of
the classical integration schemes. The criterion to maintain a specified level of accuracy
in the solution is based only on the radius of convergence of the time series.

(3) Finally, the asymptotic procedure yields the quasi-analytical solution no matter
what the value of the critical time segment between two consecutive asymptotic
developments is. This is because equation (10) is continuous between two critical time
values. Thus, the solution can be evaluated at any time between them.

Finally, the DAM applied to linear problems can be compared to the method of
undetermined coefficients and the power series method (the analytical techniques used to
solve ordinary differential linear equations [15, 16]). One knows that the solution of second
order ordinary differential equations is the result of a complementary solution uh (t) and
a particular solution up (t):

m d2u/dt2 + c du/dt+ ku= f(t), u(t)= uh (t)+ up (t), (19a, b)

where m, c and k are the mass, damping and stiffness of the mass–damper–spring system;
uh (t) is the solution of a homogeneous differential equation ( f(t)=0); up (t) is the
particular solution for a non-homogeneous equation. If the load vector is defined in a
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polynomial form up to power N, the particular solution, which will satisfy the second order
equation [15], can be written as

up (t)= u0 + u1 t+ u2 t2 + u3 t3 + · · ·+ uN tN, (20)

where the uj are the unknown coefficients. Thus, substituting equation (20) in equations
(19), and expressing all terms as a power of time, the unknown coefficients can be
determined. In order to establish the stability of this explicit method, is presented in the
following section a stability analysis for different values of the order N.

3. STABILITY STUDY

It is well known that explicit time integration schemes are conditionally stable [17]. The
DAM is an explicit method and for the method to be stable, the time segment length must
satisfy a stability criterion. To determine the stability limit of the DAM, the technique
described in reference [17] is used.

Since damping is small for practical structures, it can be neglected in studying the
stability behavior of DAM. One assumes, without any loss of generality, that the structure
is only subjected to initial conditions; no external loading is applied. Using equations (4),
(5a) and (9), one can easily demonstrate that:

6up+1

u̇p+17=$[A]
[B	 ]

[B]
[A	 ]%6up

u̇p7=[S]6up

u̇p7,

[A]= s
m1

n=0

(Dt)2n

(2n)!
(−[M]−1[K])n, [B]= s

m2

n=0

(Dt)2n+1

(2n+1)!
(−[M]−1[K])n,

[A	 ]= s
m2

n=0

(Dt)2n

(2n)!
(−[M]−1[K])n, [B	 ]= s

m1

n=1

(Dt)2n−1

(2n−1)!
(−[M]−1[K])n,

m1 =6N/2 if N is even,
(N−1)/2 if N is odd,

m2 =6N/2−1 if N is even,
(N−1)/2 if N is odd,

(21)

where {up} and {u̇p} are the displacement and velocity vectors at the end of the time
segment p; for p=0, they represent initial conditions. The meaning of Dt in equation (21)
is the time segment length corresponding to what was previously called the critical time
(section 2.2). [S] is the amplification matrix. One can demonstrate that the system is
stable if the spectral radius of [S] is less than or equal to one [17].

One can rewrite equations (21) in the modal space using equations (13):

if N is even, 6yp+1

ẏp+17=G
K

k

[A
 ]+
(Dt[v])N

N!
(−1)N/2

−[v2
i ] [B�]

[B�]

[A
 ]
G
L

l6yp

ẏp7; (22a)

if N is odd, 6yp+1

ẏp+17=G
K

k

[A�]

[B
 ]

−[1/v2
i ] [B
 ]+ [1/vi ]

(Dt[v])N

N!
(−1)N−1/2

[A�]
G
L

l6yp

ẏp7, (22b)
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where matrices [A�], [B�], [A
 ] and [B
 ] are diagonal and defined by

A�ii = s
m1

n=0

(Dtvi )2n

(2n)!
(−1)n, B�ii = s

m2

n=0

(Dtvi )2n+1

vi (2n+1)!
(−1)n,

A� ii = s
m2

n=0

(Dtvi )2n

(2n!)
(−1)n, B� ii = s

m1

n=1

vi
(Dtvi )2n−1

(2n−1)!
(−1)n. (23)

Equation (22) represents a system of uncoupled equations. Stability analysis will be applied
to one modal equation:

6yp+1

ẏp+17=$A11

A21

A12

A22%6yp

ẏp7. (24a)

If N is even,

A22 =1−
(Dtv)2

2!
+

(Dtv)4

4!
−· · ·+ (−1)N/2−1 (Dtv)N−2

(N−2)!
, A21 =−v2A12,

A11 =A22 + (−1)N/2 (Dtv)N

N!
,

A12 =
1
v 0(Dtv)

1!
−

(Dtv)3

3!
+· · ·+ (−1)N/2−1 (Dtv)N−1

(N−1)!1; (24b)

if N is odd,

A11 =A22 =1−
(Dtv)2

2!
+

(Dtv)4

4!
−· · ·+ (−1)(N−1)/2 (Dtv)N−1

(N−1)!
,

A21 =−v0(Dtv)
1!

−
(Dtv)3

3!
+· · ·+ (−1)(N−1)/2 (Dtv)N−2

(N−2)!
,

A12 =−
1
v2 A21 +

1
v 0(−1)(N+1)/2 (Dtv)N

(N)! 1. (24c)

The spectral radius of equation (24) is defined by [17]

r([A])=max
i

=li ([A]) =,

l1,2 =A1 2 (A2
1 −A2)1/2, A1 = 1

2 trace [A], A2 =det [A]. (25)

If A2
1 QA2, equation (25) becomes

l1,2 =A1 2 i(A2 −A2
1 )1/2, r([A])=z(A1)2 + ((A2 −A2

1 )1/2)2 =zA2 =zdet [A]. (26)

When eigenvalues are complex conjugate (so-called super-stability case [17]), the spectral
radius is one when N tends toward infinity and in this case, DAM and MDAM are
unconditionally stable:

lim
N:a

A11 = lim
N:a

A22 = cos (vDt), lim
N:a

A12 =−lim
N:a

A21 = sin (vDt),

lim
N:a

r([A])= lim
N:a

zdet [A]=1.
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For a finite value of N, one can easily demonstrate, for the super-stabilty case,

r([A])2 =1+ s
2N−2

i=M,2

(vDt)i0 1
((i/2)!)2 +

(−1)L

(i−N)!N!
+0 s

i/2−1

j= i−N+1

2
(−1)j+ i/2

j!(i− j)!11, (27)

where M=N+1 and L=1+ i/2 if N is odd and M=N and L= i/2 if N is even. For
example, for N=2 to N=9, the spectral radii squared are given by

N=2, r2 =1+
(vDt)2

2
; N=3, r2 =1+

(vDt)4

12
;

N=4, r2 =1−
(vDt)4

24
+

(vDt)6

144
;

N=5, r2 =1−
(vDt)6

180
+

(vDt)8

2880
;

N=6, r2 =1+
(vDt)6

720
−

(vDt)8

2880
+

(vDt)10

86400
;

N=7, r2 =1+
(vDt)8

6720
−

(vDt)10

75600
+

(vDt)12

3628800
;

N=8, r2 =1−
(vDt)8

40320
+

(vDt)10

134400
−

(vDt)12

2903040
+

(vDt)14

203212800
;

N=9, r2 =1−
(vDt)10

453600
+

(vDt)12

4354560
−

(vDt)14

152409600
+

(vDt)16

14631321600
. (28)

From equations (27) and (28) one concludes:
The spectral radius can be larger than one for N=2, 3, 6, 7, for a small value of vDt.

This is because in this case, the term immediately following 1 is the dominant one, and
is positive.

The spectral radius is less than one for a finite value of vDt for N=4, 5, 8, 9, etc.,
because the term immediately following 1 is the dominant one and it is negative.

In practice, using ten digit calculations, one can observe that for Nq 3, the spectral
radius defined by equation (25) is equal to one for a limited range of vDt. Table 1 shows
those ranges. This table has been obtained using the MAPLE V package. In some cases,
there exists two or more of these ranges. In fact, the spectral radius is a little larger than
one between those ranges, as shown in Table 2.

The spectral radius is plotted as a function of vDt for even and odd values of N in
Figures 3 and 4, respectively. Remember that the central difference scheme is stable for
vDtE 2 [17]. The critical time segment length increases with the order N. For N=29, the
critical time segment is five times the critical time step corresponding to the central
difference scheme.

From stability analysis, one concludes that DAM is conditionally stable, and thus the
time segment will be a function of the smallest period of vibration of the discrete problem.
This is similar to the central difference scheme. To overcome this limitation, one can apply
DAM in the modal space using the appropriate number of modes. Some numerical results
combining mode superposition and DAM will be presented. In order to demonstrate and
prove the validity of the present work, some particular cases are discussed in the following
sections.
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T 1

vDt ranges for which the spectral radius in less than one

Order N r([A])E 1 Order N r([A])E 1

2 vDt=0 3 vDt=0
4 0QvDtQ 2·17 5 0QvDtQ 2·65
6 0QvDtQ 0·8, 2·2QvDtQ 3·17 7 0 QvDtQ 0·24
8 0QvDtQ 2·00 9 0QvDtQ 3·08

10 0QvDtQ 0·5, 2·00QvDtQ 4·68 11 0 QvDtQ 0·87, 3·79 QvDtQ 5·14
12 0QvDtQ 1·8, 5·59QvDtQ 5·92 13 0 QvDtQ 3·62
14 0QvDtQ 1·5, 1·8QvDtQ 5·4 15 0 QvDtQ 1·6, 3·60QvDtQ 6·02
16 0QvDtQ 2·15, 5·3 QvDtQ 6·28 17 0 QvDtQ 3·44
18 0QvDtQ 5·2 19 0QvDtQ 2·8, 3·5QvDtQ 6·92
20 0QvDtQ 3·3, 5·2QvDtQ 8·3 21 0 QvDtQ 3·6, 6·93QvDtQ 8·80
22 0QvDtQ 5·2, 8·6QvDtQ 9·47 23 0 QvDtQ 6·9
24 0QvDtQ 4·5, 5·2QvDtQ 8·40 25 0 QvDtQ 4·5, 6·8QvDtQ 9·33
26 0QvDtQ 2·46, 3·80 QvDtQ 4·9 27 0 QvDtQ 6·9, 10·12QvDtQ 11·07

8·5QvDtQ 10·73
28 0QvDtQ 2·00, 2·50 QvDtQ 8·63 29 0 QvDtQ 6·00, 6·8 QvDtQ 10·06

4. APPLICATIONS TO SINGLE-DEGREE-OF-FREEDOM PROBLEMS

4.1.  

In this section, a proof of convergence for the free vibration of a single-degree-of-free-
dom system subjected to initial conditions is presented. Two cases are considered: with
damping (c$ 0) and without damping (c=0). For the damping case, numerical results
are presented for values of the damping ratio that result in overdamped, critically damped,
and underdamped solutions [16].

T 2

Spectral radii for different values of vDt for N=21 and N=29

N
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

21 29
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

vDt r vDt r

1 1·000000000 1 1·000000000
3·6 1·000000000 5 1·000000000
3·7 1·000000002 5·9 1·000000001
4 1·000000020 6·5 1·000000004
5 1·000004626 6·7 1·000000001
6 1·000157417 6·8 0·9999999943
6·6 1·000423213 7 0·9999999535
6·8 1·000253131 8 0·9999918278
7 0·9994574529 9 0·9997734248
8 0·9193617507 10 0·9996019758
8·5 0·5946234109 10·1 1·000181899
8·79 0·9907726421 11 1·066867469
9 1·158566290 12 1·791713875
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Figure 3. Spectral radius in function of vDt for N even.

4.1.1. Proof of convergence
The ordinary differential SDOF free vibration equation of a discrete spring–damper–

mass system with initial conditions can be written as

d2u/dt2 +2jv du/dt+v2u=0, v2 = k/m, 2jv= c/m,

u(t=0)= u0, du(t=0)/dt= u1, (29)

where u is the displacement, k the stiffness of the spring, c the damping coefficient and
m the mass supported by the spring. The analytical solution of the differential equation
(29) in the case of undamped vibrations (c=0) is

u(t)= u0 cos (vt)+ (u1 /v) sin (vt). (30a)

Using power series expansions of sine and cosine functions, equation (30a) is written:

u(t)= u001−
(vt)2

2!
+

(vt)4

4!
−

(vt)6

6!
+−· · ·1+

u1

v 0(vt)
1!

−
(vt)3

3!
+

(vt)5

5!
− +· · ·1,

(30b)

Figure 4. Spectral radius in function of vDt for N odd.
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u(t)=0u0 +
u1

v

(vt)
1!

− u0
(vt)2

2!
−

u1

v

(vt)3

3!
+ u0

(vt)4

4!
+

u1

v

(vt)5

5!
− u0

(vt)6

6!
−+· · ·1.

(30c)

Using the asymptotic expansion defined in equation (4) and the recursive solution of
equation (9), the following solution is obtained:

u2 =
−1
2m

[ku0]=
−1
2

[v2u0]; u3 =
−1
6

[v2u1]=
−u1

3!v
v3; u4 =

−1
4×3

[v2u2]=
u0

4!
v4,

u5 =
−1

5×4
[v2u3]=

u1

5!v
v5, u6 =

−1
6×5

[v2u4]=
−u0

6!
v6, . . . . (31)

It is seen from equation (31) that the asymtotic equation converges to the analytical
solution (30) if an infinite asymptotic expansion of the solution u(t) is adopted. This
demonstrates the convergence of the asymptotic expansion. When damping is present, the
analytical solution of the differential equation (29) becomes

u(t)= e−jvt$u0 cos (vD t)+0u1 + jvu0

vD 1 sin (vD t)%, vD =vz1− j2. (32a)

Using the expansions of the sine, cosine, and exponential functions, equation (32a) can
be written:

u(t)=$u001−
(vD t)2

2!
+

(vD t)4

4!
−

(vD t)6

6!
+ −· · ·1

+
u1 + jvu0

vD 0(vD t)
1!

−
(vD t)3

3!
+

(vD t)5

5!
−+· · ·1%

×$1−vjt+
(vjt)2

2!
−

(vjt)3

3!
+

(vjt)4

4!
−

(vjt)5

5!
+−· · ·%, (32b)

u(t)= u0 + tu1 −
t2

2!
[2vju1 + (v2j2 +v2

D )u0]

+
t3

3!
[(−v2

D +3v2j2)u1 + (v2j2 +2v2
D jv+2v3j3)u0]− + · · ·. (32c)

With the definition of the damped natural frequency vD equation (32c) can be written as

u(t)= u0 + tu1 −
t2

2!
[2vju1 +v2u0]+

t3

3!
[(1+4j2)v2u1 +2jv3u0]−+· · ·. (33)

Using the asymptotic expansion given in equation (4) and the recursive solution of
equation (9), the following solution is obtained:

u2 = (−1/2m) [cu1 + ku0]= (−1/2) [2jvu1 +v2u0];

u3 = (−1/6) [4jvu2 +v2u1]= (1/6) [(1+4j2)v2u1 +2jv3u0],· · ·. (34)

Once again, it is observed, that the asymptotic method converges to the analytical solution
when an infinite expansion is considered.
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Figure 5. SDOF, damped free vibration example: ——, overdamping exact solution; ····, underdamping exact
solution; - - - -, critical damping exact solution; w, DAM intermediate values; Q, DAM time segment change.

4.1.2. Numerical examples
To illustrate the application of DAM, the solution of the free vibration damping

problem (equation 29) using an asymptotic development using 30 terms in the series
(N=30) is presented. The parameter o (equation 18) to compute the critical time has been
set to 10−6. The data for this problem are k=10 and m=1 and the initial conditions are
u0 =0·15 and u1 =0. The analytical solutions [15, 16] for three damping values are given
as:

u(t)=−0·0218 e−8.873t +0·1718 e−1·127t, for the overdamped case (c=10);

u(t)= (0·15+0·4743t) e−3·1623t, for the critically damped case (c=z40);

u(t)= e−t(0·15 cos (3t)+0·05 sin (3t)), for the underdamped case (c=2).

In Figure 5, the results obtained with the dynamic asymptotic method using a series of
order 30 are compared to the analytical results for 0Q tQ 6. The critical time computed
with equation (18) is marked by a black box on the curves. Between two values of the
critical time, some intermediate values computed with the polynomial series are also
shown. Therefore, it is observed that in order to obtain a solution between time t=0 and
t=4·0, only four time segments are needed with DAM for the overdamped case
(tcrit =0·96, 2·13, 3·45 and 4·75). For the underdamped (tcrit =2·71 and 6·04) and critically
damped cases (tcrit =2·40 and 5·48), only two segments are required. For a lower order
of the series, more time segments would be necessary to obtain accurate results. For explicit
or implicit schemes, the number of time steps required for convergence is larger than 3.
It is seen that the DAM results are in good agreement with the analytical solution, and
the solution is obtained with fewer time segments than with explicit or implicit integration
schemes.

One can observe, from the stability analysis (section 3), that the critical value of
vDt is equal to 11·7 for N=30 which gives Dt=3·9. Since the actual value tcrit is
smaller than Dt, one concludes that the criterion used to achieve an accurate solution
(equation 18) is thus more restrictive than the stability criterion. The results for a MDOF
problem obtained from the Newmark-b scheme are compared with the DAM in the next
section.
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4.2.   

In this section, a proof of convergence is given for two transient vibration problems.
Numerical results are presented for the case of harmonic loading in the form of a cosine
series for three exciting frequencies (V): standard vibration (V$v), resonance (V=v)
and vibration with beat phenomenon (V1v).

4.2.1. Proof of convergence for constant and harmonic load cases
It is proved in this section that the DAM also converges to the analytical solution for

two types of loading:

f(t)=d2u/dt2 +v2u, with f=F1 /m for constant load

and f(t)= (F2/m) cos (Vt) for harmonic load. (35)

The analytical solution for the constant load is given by

u(t)= (u0 −F1 /k) cos (vt)+
u1

v
sin vt+F1 /k. (36)

Using the asymptotic expansion defined in equation (4) and the recursive solution of
equation (9), the following solution is obtained:

u2 =
−v2

2! $u0 −
F1

k %, u3 =
−u1

3!v
v3, u4 =

v4

4! $u0 −
F1

k %,

u5 =
u1

5!v
v5, u6 =

−v6

6! $u0 −
F1

k %, · · ·. (37)

The polynomial series expansion of equation (36) is similar to the one defined by equation
(30c) except that u0 is replaced by (u0 −F1 /k). Therefore, it is again seen that DAM
converges to the exact solution if an infinite series is used. It can also be demonstrated
that the same conclusion can be drawn if damping is included.

For the harmonic forced vibration with a cosine function, the analytical solution is given
by the following equation when u0 = u1 =0 if V$v:

u(t)=
F2

k 0 v2

[v2 −V2]1(cos (Vt)− cos (vt)). (38a)

The polynomial series of equation (38a) is given by:

cos (Vt)− cos (vt)=−2(sin (V−v)t/2) (sin (V+v)t/2),

u(t)=
v2F2

k 0t2

2!
−

(v2 +V2)t4

4!
+

(V4 +V2v2 +v4)t6

6!
−+· · ·1. (38b)

To use the DAM given by equation (9), the cosine loading function must be developed
in a polynomial series as

f(t)= (F2 /m) (1− (Vt)2/2!+(Vt)4/4!−(Vt)6/6!+−· · ·). (39)
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Using equation (39) with equation (9), the solution can be written as

u2 =
v2

2!
F2

k
, u3 =0, u4 =

−v2

4!
F2

k
(V2 +v2), u5 =0, (40)

u6 =
v2

6!
F2

k
(V4 +V2v2 +v4), . . . .

For this particular harmonic load, the DAM results converge to the analytical solution
when N becomes infinity. The same conclusion can be drawn for the damped case with
a sinusoidal loading function. In the case of resonance which corresponds to V=v, the
solution from the DAM is as follows:

u(t)= (F2/k) (vt/2) [(vt)− (vt)3/3!+(vt)5/5!−(vt)7/7!+−· · ·], (41)

When N reaches infinity,

u(t)= (F2/k) (vt/2) sin (vt)= (F2 /2vm)t sin (vt). (42)

Equation (39) is the resonant response of an undamped system [16].

4.2.2. Numerical examples
To validate the application of the present method for transient dynamics problems,

solutions are presented for an undamped system (c=0) subjected to a cosine load with
initial displacement and velocity set to 0 (u0 = u1 =0). The frequency ratios V/v are 0·5,
0·9 and 1 and the other input data are k=m=F2 =1.

In Figures 6–8, the analytical results are compared with those obtained from the DAM
for a value of the order N of 30 (order 28 for the load) for V/v=0·5, 0·9 and 1,
respectively. The critical times calculated from equation (18) are marked with black boxes
and intermediate values obtained with the time polynomial series are also shown. Table 3
gives the critical times and time segment lengths for 0 Q tQ 90. The time segment lengths
computed with equation (18) are approximately 9·3 for the three cases. Using results of
section 3, the critical value of vDt is 11·7 for N=30 which gives Dt=11·7 (v=1). This
example, compared to the previous one (see Figure 5), confirms that the time segment

Figure 6. SDOF, harmonic load, V/v=0·5: ——, analytical solution; w, DAM intermediate values; Q, DAM
time segment change.
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Figure 7. SDOF, harmonic load, V/v=0·9: ——, analytical solution; w, DAM intermediate values; Q, DAM
time segment change.

length is a function of the frequency v. Once again, equation (18) gives a smaller time
segment length than the one computed from stability considerations.

For these three cases, it is noted that the number of time segments per period of vibration
is between 1 and 2. For an implicit method, more time steps are needed. Using the criterion
proposed by Bathe and Wilson [14] to compute the time step (smallest period divided by
ten), 20 time steps per period (approximately 140 steps for t=0 to t=90) are required.
In order to accurately predict the maximum displacement shown in Figure 6, four time
segments per period of oscillation are necessary.

It is noted in Figure 7 that the beat phenomenon is well represented without any
modification in the algorithm and the resonance phenomenon is also clearly seen in
Figure 8.

5. APPLICATIONS TO MULTI DEGREE-OF-FREEDOM PROBLEMS

Two examples are presented here to validate DAM and MDAM for multi-degree-of-
freedom problems. The first example is to demonstrate the versatility of the DAM and

Figure 8. SDOF, harmonic load, V/v=1·0: ——, analytical solution; w, DAM intermediate values; Q, DAM
time segment change.
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T 3

Critical time segments for SDOF with cosine load with different frequency excitations

V/v
ZXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXV

0·5 0·9 1
ZXXXXXCXXXXXV ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Critical time Time segment Critical time Time segment Critical time Time segment

9·21 9·21 8·78 8·78 8·45 8·45
18·50 9·29 18·07 9·29 17·40 8·95
27·88 9·38 27·58 9·51 26·65 9·25
37·21 9·33 37·10 9·52 35·97 9·32
46·40 9·19 46·51 9·41 45·32 9·35
55·67 9·27 55·58 9·07 54·68 9·36
65·07 9·40 64·59 9·01 64·04 9·36
74·43 9·36 73·88 9·29 73·40 9·36
83·57 9·14 83·89 10·01 82·77 9·37
92·68 9·11 93·45 9·56 92·14 9·37

Mean value 9·27 Mean value 9·34 Mean value 9·21

to compare the results to those obtained with the Newmark-b integration scheme. The
influence of varying the value of the parameter o defined in equation (18) will also be
demonstrated. The second example deals with 40 degrees of freedom and mode
superposition is used. DAM will be applied to each uncoupled equation. The influence of
varying the order N on computing time will be analyzed.

5.1. --- 

A simple 2D frame idealized using three DOF is shown in Figure 9. Two types of loads
are considered: a constant load and a cosine load. In both cases, the order of the series
is 30 and o is set to 10−6. The mass and rigidity matrices are

[M]= &0·175
0
0

0
0·263

0

0
0

0·350'kNs2/mm, [K]=105& 1
−1

0

−1
3

−2

0
−2

5'kN/mm.

Figure 9. Three-degrees-of-freedom example.
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5.1.1. Forced vibration with a constant load
The analytical solution is given by [18]

8u1 (t)
u2 (t)
u3 (t)9= &1·0

0·644
0·300

1·0
−0·601
−0·676

1·0
−2·570

2·470'86·719(1−cos (14·5t))
1·070(1−cos (31·1t))
0·052(1−cos (46·1t))9.

In Figure 10, the analytical response and the response obtained with the DAM are shown.
The critical time segments are marked with black boxes and intermediate values obtained
with the time polynomial series are also shown (empty circles). Table 4 gives the critical
time values and time segment lengths for 0 Q tQ 2 s. It can be seen that the results
obtained with the DAM are exact. Two time segments per period of vibration (the largest
period of vibration is 0·43 s) are necessary to converge to the exact solution. The time
segment lengths obtained with equation (18) is equal to 0·2 s. From a stability point of
view, the critical time segment length, computed using v=46·1 rad/s, is equal to 0·25 s.
Thus, equation (18) with o=10−6 gives smaller time segment lengths than the ones
obtained from stability considerations.

In Figure 11, the numerical response obtained with the Newmark-b method using two
different time step values (Dt=0·01 and 0·05 s) are compared to the response obtained
from the DAM. The number of time steps to obtain the solution between t=0 and t=2 s
are 200 and 40, respectively. With the DAM, ten time segments are necessary to obtain
the exact solution. It is noted that the convergence is poor with Dt=0·05 s whereas the
one obtained with Dt=0·01 s is relatively good.

It is concluded that the results obtained with the DAM are better than those obtained
with the implicit scheme for the following reasons: (1) the response with the DAM is
practically exact; (2) one needs only ten time segments to find the response compared to
40 and 200 time steps for the Newmark-b method with Dt=0·01 s and 0·05 s, respectively;
(3) no aliasing phenomenon appears with the DAM; (4) the time segment is automatically
estimated by the algorithm.

5.1.2. Forced vibration with harmonic load
The same structure has been studied with a cosine loading function using two frequency

ratios: V/v1 =0·9 and 1·0. Table 4 gives critical time values and time segment lengths for
0Q tQ 4 s. In Figures 12 and 13, the response obtained with the DAM and the one
obtained with the Newmark-b algorithm, using two time step values (Dt=0·01 s and
0·05 s) are shown. As in the previous loading case, the convergence with Dt=0·05 s is
poor, and the one obtained with Dt=0·01 s is relatively good. To obtain the response
between t=0 and t=4 s, 400 time steps are needed for Dt=0·01 s and 80 for Dt=0·05 s.
The DAM converges to the exact solution with only 20 time segments.

5.1.3. Effect of the convergence tolerance o

Using equation (18), it is possible to find critical time values for which the error between
two consecutive orders of asymptotic development is less than o. But this critical time or
the time segment length does not guarantee that the solution will be stable. To show the
effect of the convergence criterion, the same problem is solved using a constant load and
varying the value of o(o=10−2, 10−3, 10−4 and 10−5). Results for o=10−2, 10−3 and the
exact solution are shown in Figure 14. For values of o varying from 10−4 to 10−5, solutions
obtained with the DAM and the exact solution are perfectly superposed. For o=10−2, one
observes that the solution is unstable, and for o=10−3, the solution is less accurate than
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Figure 10. Three DOF response for constant load, V/v1 =0: ——, analytical solution: u1; - - - -, analytical
solution: u2; ····, analytical solution: u3; w, DAM intermediate values; Q, DAM time segment change.

T 4

Critical time segments for three DOF problem with cosine load with different frequency
excitations

V/v
ZXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXV

0·0 1·0 0·9
ZXXXXXCXXXXXV ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Critical time Time segment Critical time Time segment Critical time Time segment

0·19 0·19 0·20 0·20 0·20 0·20
0·39 0·20 0·39 0·19 0·39 0·19
0·58 0·19 0·59 0·20 0·59 0·20
0·79 0·21 0·80 0·21 0·80 0·21
1·00 0·21 1·00 0·20 1·00 0·20
1·19 0·19 1·21 0·21 1·21 0·21
1·40 0·21 1·42 0·21 1·42 0·21
1·61 0·21 1·63 0·21 1·62 0·20
1·81 0·20 1·84 0·21 1·82 0·20
2·03 0·22 2·04 0·20 2·02 0·20
– – 2·25 0·22 2·23 0·21
– – 2·46 0·21 2·44 0·21
– – 2·68 0·22 2·64 0·20
– – 2·89 0·21 2·85 0·21
– – 3·11 0·22 3·06 0·21
– – 3·33 0·22 3·26 0·20
– – 3·54 0·21 3·47 0·21
– – 3·76 0·22 3·67 0·20
– – 3·97 0·21 3·86 0·19
– – 4·19 0·22 4·06 0·20

Mean value 0·20 Mean value 0·21 Mean value 0·20

the one obtained with o=10−5. The minimum and maximum values of time segment
lengths are shown in Table 5.

From stability considerations, the critical time segment length has been found previously
to equal 0·25 s. Therefore, the solution is unstable with o=10−2 since, for this value of
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Figure 11. Three DOF response for constant load, V/v1 =0: ——, DAM; ····, Newmark Dt=0·01; –·–·,
Newmark Dt=0·05; (a) displacement u1; (b) displacement u2; (c) displacement u3.

Figure 12. Three DOF response for harmonic load, V/v1 =1·0: ——, DAM; ····, Newmark Dt=0·01; –·–·,
Newmark Dt=0·05; (a) displacement u1; (b) displacement u2; (c) displacement u3.
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Figure 13. Three DOF response for harmonic load, V/v1 =0·9: ——, DAM; ····, Newmark Dt=0·01; –·–·,
Newmark Dt=0·05; (a) displacement u1; (b) displacement u2; (c) displacement u3.

Figure 14. Three DOF response for constant load, V/v1 =0·0: ——, analytical solution; –Q–, DAM with
o=10−2; –R–, DAM with o=10−3; (a) displacement u1; (b) displacement u2; (c) displacement u3.
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T 5

Time segment lengths for different values of o

o Minimum Maximum Mean value

10−2 0·25402 0·27175 0·25661
10−3 0·23342 0·24953 0·24364
10−4 0·21941 0·24689 0·22762
10−5 0·20713 0·22094 0·21057
10−6 0·19111 0·22335 0·20189

T 6

Beam under constant load: period values

Mode number 1 2 3 4
Period (s) 2.84×10−4 3.02×10−4 8.86×10−4 3.54×10−3

o, the time segment length is always larger than 0·25 s. For the other case, the time segment
length is less than 0·25 s and thus, solutions are stable.

5.2.      

For the last application, the solution of the multi-degree-of-freedom problem shown in
Figure 15 [19] is presented. The time–displacement response is shown in Figure 16. One
uses the DAM coupled with a mode superposition technique, retaining the four first
modes. The corresponding periods are given in Table 6.

The objective of this problem, is to show the effect of the order N of asymptotic
development on the CPU time requirements. The order of N is varied from 10 to 100.

Figure 15. Simply supported beam loaded by a constant load with: L=1·19 m; r=2·96×103 kg/m3;
A=0·51×10−2 m2; I=0·944×10−5 m4; E=10·48×1010 N/m2; F=4·448 N.

Figure 16. Dynamic response of the simply supported beam subjected to a constant load.
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Figure 17. Relative CPU time for different values of N.

Figure 17 shows the relative CPU time, excluding eigenvalue calculations, as a function
of N. Equation (18c) has been used to compute the critical time segment length with
o=10−6. For every order, the same solution was obtained.

One can conclude from Figure 17, that the higher the order, the shorter is the CPU time
required to get the solution. However, for an order N larger than 50, negligible reductions
in CPU time are obtained.

6. CONCLUSION

A novel approach, called the Dynamic Asymptotic Method (DAM), has been presented.
This method can effectively be used for the solution of linear transient dynamics problems.
The method is similar to the analytical method undetermined coefficients and power series
methods used to find the analytical solution of ordinary differential equations. It has been
demonstrated that the DAM results converge to the analytical solution when the maximum
power of the polynomial series reaches infinity. The DAM can be considered as a
semi-analytical method.

In practical problems, the maximum power of the series must be limited. Therefore, there
is a limit, called tcrit , beyond which the series diverges. In the present work, a method has
been proposed to compute the value of tcrit automatically during the solution procedure.
Stability results have also been presented as a function of N. From examples presented
in this paper one can observe that the critical time segment lengths evaluated with equation
(18) is smaller than the one estimated from stability considerations if o is less than 10−3.
A good compromise is o=10−4. The solution obtained with the DAM is continuous for
any time value. At the critical time, the displacements and their first derivatives (velocities)
are continuous.

It is concluded that the proposed DAM is more efficient than the standard integration
techniques such as explicit or implicit schemes. The results obtained with the DAM are
better than those obtained with such schemes for the following reasons:

the response with DAM is practically exact;
less time segments to find the response are necessary in comparison to the Newmark-b

method;
no aliasing phenomenon exists with DAM;
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the time segment is automatically estimated by the algorithm without any user input
except for the tolerance o (equation 18).

Since the DAM is in the family of explicit methods, stability is conditional and it depends
on the value of the lowest period of vibration. Just as it is the case for the explicit central
difference technique, the DAM can be combined with a mode superposition technique. In
this case, the DAM is applied to each uncoupled equation (MDAM). Very good results
were obtained with this method. One also observes, from example 5.2, that the CPU time
requirements decrease as a function of the order N. Thus, it is better to use higher
asymptotic developments.

The applications of the DAM have been presented for constant and cosine loads. The
DAM can be used for other types of loading if the load vector is developed in a polynomial
series as a function of time. This method can also be used for earthquake analysis using
accelerograms with a linear approximation of the acceleration between two recorded
acceleration values. The size of the time segment is then conditioned by the one used for
the data acquisition of the accelerogram.

The DAM can be extended to the non-linear dynamic problem as well as to transient
heat transfer by conduction [20]. In the latter case, the differential equation of the spatial
discretization can be written as

[C]{T� (t)}+[K]{T(t)}= {F(t)}

and the solution can be determined by the asymptotic method in terms of the following
polynomial series:

{T(t)}= s
N

j=0

(tj{Tj}).

From the above discussion and conclusions, it is observed that the asymptotic method
can be considered as a general quasi-analytical method. For a partial differential equation
in time and space domain, the space can be discretized using the finite element method.
The remaining system of equations becomes a set of ordinary differential equations. It is
obvious that, if the load vector is defined in a polynomial form, the application of the
asymptotic method to solve the ordinary differential equation is similar to the method of
undetermined coefficients. More detailed studies on the computational performances
(memory and CPU time requirements) and the wide application of the DAM in
comparison with the classical Euler explicit and Newmark-b schemes are under progress
at Laval University [21].
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APPENDIX A: NOTATION

A1, A2 invariant of the amplifica-
tion matrix

c damping coefficient of the
damper

[C] damping matrix
f(t) non homogenous part of

the differential equation
{F(t)} nodal load vector
{Fj} nodal asymptotic load

vectors
k stiffness of a spring
[K] stiffness matrix
m mass sustained by a

spring
[M] mass matrix

N maximum order of the
asymptotic polynomial
series

[S] amplification matrix
t time
tcrit critical time
uh complementary solution

of a homogenous ordi-
nary differential equation

up particular solution of a
non-homogenous ordi-
nary differential equation

{u(t)}, {u̇(t)}, {ü(t)} nodal displacement, vel-
ocity and acceleration
vectors
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{up(t)} {üp(t)} nodal displacement and
velocity vectors at the end
of time segment p

{up+1(t)} {u̇p+1(t)} nodal displacement and
velocity vectors at the end
of time segment p+1

{u0} nodal initial displacement
vector

{u1} nodal initial velocity vec-
tor

{uj} nodal vectors of the
asymptotic development

[X] matrix of eigenvectors
{y} generalized displacement

vector (in the modal
space)

Dt time step or time
segment

o tolerance value to com-
pute the critical time

l1,2 eigenvalues of the am-
plification matrix

[v2] diagonal matrix with fre-
quency values squared on
the diagonal

v undamped natural fre-
quency

vD dampednatural frequency
V frequency of the exciting

force
r spectral radius of the

amplification matrix
[2jv] diagonal damping matrix

in the modal space
t interval of time starting at

ti
crit


